Robust M-estimation of multivariate conditionally heteroscedastic time series models with elliptical innovations
نویسندگان
چکیده
This paper proposes new methods for the econometric analysis of outlier contaminated multivariate conditionally heteroscedastic time series. Robust alternatives to the Gaussian quasi-maximum likelihood estimator are presented. Under elliptical symmetry of the innovation vector, consistency results for M-estimation of the general conditional heteroscedasticity model are obtained. We also propose a robust estimator for the cross-correlation matrix and a diagnostic check for correct specification of the innovation density function. In a Monte Carlo experiment, the effect of outliers on different types of M-estimators is studied. We conclude with a financial application in which these new tools are used to analyse and estimate the symmetric BEKK model for the 1980-2006 series of weekly returns on the Nasdaq and NYSE composite indices. For this dataset, robust estimators are needed to cope with the outlying returns corresponding to the stock market crash in 1987 and the burst of the dotcom bubble in 2000.
منابع مشابه
Theis Lange Asymptotic Theory in Financial Time Series Models with Conditional Heteroscedasticity
The present thesis deals with asymptotic analysis of financial time series models with conditional heteroscedasticity. It is well-established within financial econometrics that most financial time series data exhibit time varying conditional volatility, as well as other types of non-linearities. Reflecting this, all four essays of this thesis consider models allowing for time varying conditiona...
متن کاملUSING SUBSPACE METHODS FOR ESTIMATING ARMA MODELS FOR MULTIVARIATE TIME SERIES WITH CONDITIONALLY HETEROSKEDASTIC INNOVATIONS By
This paper deals with the estimation of linear dynamic models of the ARMA type for the conditional mean for time series with conditionally heteroskedastic innovation process widely used in modelling financial time series. Estimation is performed using subspace methods which are known to have computational advantages as compared to prediction error methods based on criterion minimization. These ...
متن کاملContributions to The Estimation of Mixed-State Conditionally Heteroscedastic Latent Factor Models: A Comparative Study
Mixed-State conditionally heteroscedastic latent factor models attempt to describe a complex nonlinear dynamic system with a succession of linear latent factor models indexed by a switching variable. Unfortunately, despite the framework’s simplicity exact state and parameter estimation are still intractable because of the interdependency across the latent factor volatility processes. Recently, ...
متن کاملAn introduction to efficient estimation for semiparametric time series
We illustrate several recent results on efficient estimation for semiparametric time series models with two types of AR(1) models: having independent and centered innovations, and having general and conditionally centered innovations. We consider in particular estimation of the autoregression parameter, the stationary distribution, the innovation distribution, and the stationary density.
متن کاملCopula-based semiparametric models for multivariate time series
The authors extend to multivariate contexts the copula-based univariate time series modeling approach of Chen & Fan [X. Chen, Y. Fan, Estimation of copula-based semiparametric time series models, J. Econometrics 130 (2006) 307–335; X. Chen, Y. Fan, Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification, J. Econometrics 135 (2006) ...
متن کامل